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ABSTRACT 

 
In this study, we performed linear and nonlinear FE (Finite 

Element) analyses to compute J-integrals for a centrally 
perforated star-shaped disc, which was made of an elastomeric 
material, under crack surface pressures and isothermal loads. 
Deformations of the disc were constrained by a circular steel 
ring enclosing the disc. Different crack sizes were assumed to 
exist in the front of the star-shaped notches. For the linear  
analysis, material compressibility was modeled with Poisson's 
varying form 0.48 to 0.4999. In addition, with the presence of 
the crack surface pressure, the J-integral was modified by 
including an additional line integral. Numerical studies show 
that the value of the J-integral increases with the increase of the 
crack length, reaches a maximum value at 1in. of crack length, 
and then decreases gradually. Both linear and nonlinear 
analyses agree qualitatively but differ quantitatively. It is also 
found that values of the J-integral strongly depend upon the 
material compressibility. 

INTRODUCTION 
 

Defects such as voids and cracks may form in elastomeric 
materials due to the manufacturing, handling or ageing. To 
ensure the integrity and reliability for such structural 
components, fracture toughness should be ascertained so that 
the onset of the crack growth can be determined based on the 
fracture resistance of the material. The J-integral is a measure 
of the fracture toughness, and commonly used as a criterion to 
determine the maximum operating loads for a given pre-
existing defect. Most elastomeric materials such as rubbers and 
solid propellants exhibit mechanical behavior that remain 
nonlinearly elastic at large strains and have very little 
compressibility, and hence these materials are often referred to 
as fully or nearly incompressible. When these elastomers are 
loaded in a highly confined state, even a small change in the 

compressibility can result in dramatic difference of stress 
distributions. For example, Schapery [1] conducted an 
experiment for a circular polymeric disk under the hydrostatic 
tension, and showed that a small change in Poisson’s ratio 
could alter the stress distribution significantly. 

Many investigations have been conducted to determine the 
relationship between the crack-tip stress and strain fields and 
the energy release rate for rubber-like materials. Thomas [2] 
was the first to study this relationship experimentally. He found 
that the average strain energy density in a sheet of rubber was 
uniquely related to the energy release rate regardless of the 
specimen type. Thomas’s conclusion had been validated later 
by Andrews [3] and Knauss [4]. Andrews used a microscopic, 
photoelastic technique to quantify the strain fields around the 
crack tip whereas Knauss used a printed-grid technique. 
Morman et al. [5] also gave an analytical solution relating the 
energy release rate to the crack tip radius. 

Rice’s development of the J-integral [6] gave a 
mathematical argument to characterize the local stress-strain 
field around a crack front. The J-integral was found to be 
equivalent to the energy release rate and independent of the 
path contours. Based on the J-integral, several path-
independent integrals have been proposed for more general 
elastic-plastic problems by including non-proportional loading 
and unloading, thermal strains, and material inhomogeneity. A 
review about the limitations and salient features of these 
integrals can be found in Kim and Orange’s work [7]. Note that 
Rice‘s original form of the J-integral is valid even for the 
nonlinear elastic materials. The problem of a crack in an 
infinite, thin, and incompressible sheet subjected to a biaxial 
tension at infinity was studied, within the framework of 
nonlinear elasticity for a Neo-Hookean material, by Wong and 
Shield [8], and Chang [9] generalized the J-integral for 
nonlinear elastic materials with finite strains. 
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The presence of the crack surface tractions, which may be 
due to ignition pressures or pressurized fluids, is of practical 
interests in engineering applications. In this regard, the J-
integral needs to be modified by including an additional line 
integral so that the path-independence of the J-integral can be 
preserved. Chang and Becker [10] scrutinized the effect of non-
conservative surface tractions applied to the crack faces on the 
energy release rate for a 2D rubber-like material. They pointed 
out that the usual expression for the energy release rate needed 
to be modified, and also demonstrated that the energy release 
rate depended upon the constitutive relation used to model the 
material response. 

In this study, a finite element (FE) analysis was conducted 
to compute the J-integral for a circular elastomeric disc with a 
pre-existing crack. The disc had a star-shaped hole with six 
symmetrical notches emanating from the disc’s center and was 
enclosed by a thin steel ring. We assumed that the disk was 
modeled either as a linearly elastic Hookean material or a 
nonlinear elastic Ogden material, and the steel ring was 
modeled as a Hookean material. Material constants obtained 
from a uniaxial tensile test data were used to describe the 
Ogden strain energy potential.  Three loading conditions, 
internal pressure, constant thermal load, and combined internal 
pressure and constant thermal load, were considered. To 
account for the material compressibility, Poisson’s ratio of the 
Hookean material was assumed to vary from 0.48 to 0.4999. 

FORMULATION OF THE PROBLEM 
 

Figure.1 shows a cross-section of the specimen in which an 
elastomeric disc is enclosed by a thin steel ring. A plane strain 
state of deformation was assumed to prevail in the body. The 
star-shaped hole at the center of the specimen had six 
symmetrically located notches. In order to obtain the J-integral 
as a function of the crack length, a starter crack with 11 
different crack sizes, a = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 
5.0, 10.0, 15 in, was assumed to exist at the notch tip. The 
elastomeric disc and the steel casing were modeled as isotropic 
and homogeneous materials. There loading conditions, 
international pressure, isothermal load, and combined 
international pressure and isothermal load, were considered. 
Deformations of the steel ring were assumed to be infinitesimal 
and the steel was modeled by Hooke's law with Young's 
modulus = 29 Mpsi, Poisson's ratio = 0.3, and the coefficient of 
thermal expansion = 6.5×10-6/

 oF 

We performed the FE analysis using the commercial 
ABAQUS computer code [11] to calculate the J-integral for the 
problem studied. Due to the symmetry of the specimen 
geometry and loading conditions, only a 30o  sector of the 
specimen was investigated. Figure 2 exhibits the finite element 
mesh of the sector for a crack size of 1 in. long, and 4824 8-
node quadrilateral elements are used with a dense mesh near 
the crack tip. Because the elastomeritc material was considered 
to be fully or nearly incompressible, hybrid elements were 
adopted in the analysis. Points on the bounding surfaces θ  = 
0o  and θ  = 30o  were constrained to move radially, and 
tangential tractions on these surfaces were set equal to zero. 
The outer surface of the steel ring was taken to be traction free. 

The elastomeric disc was assumed to be perfectly bonded to the 
steel ring so that displacements and surface tractions were 
continuous across their common interface. 

The constitutive behavior of the elastomeric disc was 
determined by either the Hooke’s law for the linear analysis or 
the Ogden strain energy potential for the nonlinear analysis. 
The stress-strain curve of the elastomer was obtained by 
conducting the uniaxial tension test at a constant displacement 
rate of 200 in/min. For the Ogden material with fully 
incompressibility, the strain energy potential is 

1 2 32
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( 3)i i i
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i

i i

U α α αµ
λ λ λ

α=

= + + −∑  (1) 

where iλ  are the deviatoric principal stretches 
1
3

i iJλ λ−= ; iλ  
are the principal stretches; and ,i iµ α  are temperature-
dependent material parameters. J is the total volume ratio. 

The shear modulus 0µ  at zero strain for the Ogden 
material can be given by 

0
1

N

i
i

µ µ
=

= ∑  (2) 

The elastic volume ratio, elJ  is related to J by 

3(1 )elJ J Tα= +  (3) 

We set N equal to 2 in the Ogden strain energy, and 
ABAQUS computer code determined the material constants 

,i iµ α   from the uniaxial test data through a least-squares-fit 
procedure. Values of 1µ  and 2µ  determined by ABAQUS are 

1 2160.4 , 1643psi psiµ µ= − =  (4) 

Computed values of the axial component of the first Piola-
Kirchhoff stress vs. the nominal axial strain are compared with 
the experimental data in Fig. 3. It is clear that the two sets of 
data are very close to each other implying that values given in 
Eq. (4) of 1µ  and 2µ  are very accurate.  

For the linear analysis, the elastomer was assumed to obey 
the Hooke’s law with Poisson's ratio ν varying from 0.48 to 
0.4999. The stress-strain curve for the Hookean material is also 
depicted in Fig. 3. The Young’s modulus is set equal to the 
slope of the stress-strain at zero strain and it can be computed 
by  

( ) 02 1E ν µ= +  (5) 

where 0µ  is obtained from Eq. (2). 

For both linear and nonlinear analyses, the coefficient of 
thermal expansion for the disk material equaled 5.6×10-6/

 o
F. 
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When the inner surface of the hole and the surface of the 
starter crack, aligned with the axis1 −x , are loaded by a 
uniform pressure p, the J-integral for an elastic material is 
given by 

2
1 1

1 1c

i
ij j

u uJ Wn T n ds p dx
x xΓ Γ

 ∂ ∂
= − + ∂ ∂ 
∫ ∫  (6) 

where W is the strain energy density, u is the displacement of a 
point, Γ  is a closed curve enclosing the crack tip, n is the 
outward unit normal to ,Γ  and ijT  is the stress tensor, and cΓ  
are the two crack faces. Note that the second term on the right-
hand side of (6) represents the work done by the pressure on the 
crack surfaces. For the thermal load, there is no surface traction 
on the crack surface and this term makes null contribution to 
the value of J. For a homogeneous hyperelastic material, ijT  
equals the first Piola-Kirchhoff stress tensors. 

The J-integral can be related to the stress intensity factor K 
by the Irwin’s relation [12]. As the crack is subjected to the 
pressure load or isothermal load, only mode I deformations 
exist around the crack. Thus, the J-integral can be written as   

 
2

21
IJ K

E
ν−

=  (7) 

RESULTS AND DISCUSSIONS 
 
Figures 4(a) and 4(b) show the dependence of the J-

integral on the crack length for the linear and nonlinear 
analyses under the pressure and thermal loads, respectively. 
Poisson’s ratio in the linear analysis is set equal to 0.4999 in 
order to compare results with those obtained from the nonlinear 
analysis. The results of the two analyses agree each other 
qualitatively but differ quantitatively. In both loading 
conditions, the J-integral initially increases with an increase in 
crack length, reaches a maximum value at a crack length of 
about 1.0in, and then gradually decreases with an increase in 
crack length. The linear analysis gives larger values of the J-
integral than those of the nonlinear analysis for each of the 
crack length. 

The differences of the J-integral in the two analyses can be 
more evident by plotting the maximum principal stress around 
the crack tip with the crack length of 1in. for the pressure and 
the isothermal loads. The contours of the in-plane maximum 
principal stress are exhibited in a small region of 1in.2 where the 
crack tip is intensively deformed. As for either the pressure or 
the isothermal loads, the two sets of the principal stresses look 
alike but differ a little bit. It is shown that the principal stress 
induced at a point near the crack tip is compressive for the 
pressure load while it is tensile for the isothermal load. Note 
that for the Hookean model a small deformation theory is used 
whereas for the Ogden model a large deformation theory is 
used. Thus, the differences in the value of the J-integral are due 
to not only the material models considered but also the 
geometrical nonlinearity of the specimen. 

To investigate the effect of material compressibility on the 
computed values of the J-integral, four different Poisson’s 
ratios, ν = 0.48, 0.49, 0.499 and 0.4999, were assumed for the 
material of the elastomeric disc in the linear analysis. 
Variations of the J-integral with the crack length are depicted in 
Figs. 6(a), (b) and (c) for the pressure, isothermal and combined 
loads, respectively. Although, the results are qualitatively 
similar to each other for different values of Poisson’s ratio, the 
values of the J-integral vary significantly with the Poisson’s 
ratio under the pressure load. The value of the J-integral for 
ν = 0.48 reaches as high as 143.3 lb/in, which is approximately 
40 times the J-integral value, 3.557 lb/in, for ν = 0.4999. It is 
clear that a slight difference in material compressibility can 
drastically change the value of the J-integral for the case of the 
pressure load, and henceforth for the combined load (Fig. 6(c)). 
When the disc is subjected to the isothermal load, the values of 
the J-integral do not vary much as those under the pressure 
load. 

For the crack length of 1 in, we further delineate the 
variation of J-integral with the Poisson’s ratio in Fig. 7. The 
value of the J-integral decreases sharply with the increase in 
Poisson’s ratio from 0.48 to 0.4999 for the pressure load, while 
it increases gradually with the increase in Poisson’s ratio for the 
isothermal load. Referring to Eq. (7), the value of J-integral is 
proportional to KI,, and thus one can verify that the value of J-
integral is proportional to p2 under the pressure load or T2 under 
the isothermal load. Therefore, even for the linear analysis, 
values of the J-integral for the combined load cannot be 
obtained by adding the energy release rates for the 
corresponding pressure and isothermal loads. The results of the 
analyses show that, under pressure load, the increase in ν will 
decrease the compressibility of the material which, in turn, will 
decrease the crack opening deformations between the two crack 
faces (Figure 8(a)). For the thermal load, the deformed shape of 
the crack faces, plotted in Fig 8(b) for different values of 
Poisson’s ratios, does not differ too much. When the Poisson’s 
ratio is equal to 0.4999, the deformed shapes between the 
Hookean and Ogden materials are almost indistinguishable. 
The relationship between the J-integral and the crack opening 
displacement �  can be ascertained in Fig. 9 where 2�  is 
defined to be the vertical distance between the opposite ending 
points on the crack faces. It is found that the value of J-integral 
is also proportional to � 2. For the crack length of 1in, the J-
integral can be determined by  

3 22.6268 10J δ= ×  (8) 

Therefore, for the present configuration of the elastomeric disk, 
the value of the J-integral can be obtained by measuring the 
crack opening displacement when the disc is loaded. 

In classical linear elastic fracture mechanics, the near-tip 
stress fields can be characterized by a single parameter such as 
the J-integral or the stress intensity factor. However, previous 
studies have shown that the T-stress is also an important 
parameter in describing the state of stresses near the crack tip. 
For example, Larsson and Carlsson [13] show that the sign and 
magnitude of the T-stress have a significant effect on the size 
and shape of a plastic zone around the crack tip. Kirk et al. [14] 
and Sorem et al. [15] show that the fracture toughness of a 
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given material can be considerably dependent on the T-stress. It 
has also been shown by Cotterel and Rice [16] that the T-stress 
plays an important role in the crack path stability. Figure 10 
depicts the variation of T-stress with the crack length for the 
pressure and isothermal loads when the Poisson’s ratio is equal 
to 0.4999. For both loading cases, the magnitude of the T-stress 
decreases with the increase of the crack length, and the T-stress 
is in compression (i.e. negative values of T-stress). Betegon and 
Hancock [17] have indicated that when the T-stress corresponds 
to the negative value, crack-tip deformations are dominated by 
the combination of the J-integral and T-stress. Furthermore, the 
fracture trajectory is path stable for a cracked specimen with 
negative T-stress. The dependence of the T-stress on the 
Poisson’s ratio is evinced in Fig. 11. Similar to the J-integral, 
the value of the T-stress strongly depends on the Poisson’s ratio 
for the pressure load whereas the Poisson’s ratio has a 
negligible effect on the T-stress for the isothermal load. It can 
be easily verified that T-stress for the combined load can be 
obtained by adding the values of T-stress from the 
corresponding pressure and isothermal loads. 

CONCLUSIONS 
 

Linear and nonlinear finite element analyses were conducted 
to obtain the variations of the J-integral with the crack length 
for an elastomeric disk enclosed by a steel ring. For both 
analyses, the value of the J-integral increases with an increase 
in the starter crack length, reaches a maximum value at 1 in. of 
crack length, and then decreases gradually. The results of the 
analyses also show that linear analysis leads to a higher value 
of J-integral than the non-linear analysis. Material 
compressibility of the disc was also considered by varying the 
Poisson’s ratio from 0.48 to 0.4999 for the Hookean material. 
For the pressure load, the value of the J-integral strongly 
depends upon the values of the Poisson’s ratio. This is due to 
the reason that the work done by the crack surface pressure 
increases noticeably as the value of the Poisson’s ratio is 
decreased, resulting in a significant increase in the J-integral. 
For the thermal load, the value of J-integral does not differ 
much with the variation of the Poisson's ratio. It is interesting 
and important to point out that, even for the linear analysis, the 
value of J-integral for the combined load cannot be obtained by 
adding the J-integral values obtained from the pressure and the 
isothermal loads separately. Dependence of the T-stress on the 
crack length and material compressibility was also examined. 
The magnitude of the T-stress decreases with the increase in 
crack length, and the T-stress is found to be in compression.  
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FIGURE 1. Specimen geometry 

FIGURE 2. For 1in long crack, the finite element mesh with 
4824 elements for the analysis of the problem 
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FIGURE 3. A comparison of the computed and the experimental 
axial nominal stress vs. nominal strain for the disk material 

FIGURE 4. Variation of the J-integral with the crack length 
when the disk material is modeled either as a Hookean 
material or an Ogden material; (a) pressure load (b) 
isothermal load
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FIGURE 5. Contours of the in-plane maximum principal stress 
in a small region around the crack tip of 1in long crack for 
Hookean and Ogden materials; (a) pressure load (b) isothermal 
load 

FIGURE 6. Variation of the J-integral with the crack length for 
different values of Poisson’s ratio; (a) pressure load (b) 
isothermal load (c) combined load 
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FIGURE 7. The dependence of the J-integral upon Poisson's 
ratio for three loadings 
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FIGURE 8. Deformed shapes of the crack face for the Ogden 
material and Hookean material with different values of 
Poisson’s ratio; (a) pressure load (b) isothermal load 
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FIGURE 9. For 1in. long crack, variation of the J-integral with 
the crack opening displacement 

FIGURE 10. Variation of the T-stress with the crack length for 
the pressure and isothermal load 

FIGURE 11. The dependence of the T-stress upon Poisson's 
ratio for three loadings 
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